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Semiclassical treatment of diffraction in billiard systems with a flux line
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In billiard systems with a flux line, semiclassical approximations for the density of states contain contribu-
tions from periodic orbits as well as from diffractive orbits that are scattered on the flux line. We derive a
semiclassical approximation for diffractive orbits that are scattered once on a flux line. This approximation is
uniformly valid for all scattering angles. The diffractive contributions are necessary in order that semiclassical
approximations are continuous if the position of the flux line is chang&tN63-651X99)11710-0

PACS numbe(s): 05.45.Mt, 03.65.Sq

I. INTRODUCTION contributions of periodic orbits. Such an estimate is, how-
ever, only valid if the scattering angle is not too close to the
Billiard systems with flux lines are simple dynamical sys- forward direction. In the forward direction, diffractive orbits
tems that can model the typical behavior of low-dimensionakontribute in the same order as periodic orbits.
guantum systems. One main application has been in the in- In this paper we investigate the semiclassical contribu-
vestigation of universal properties of quantum systems thaions of diffractive orbits to the density of states. We derive
are chaotic in the classical limii]. The high lying states of an approximation for orbits that are scattered once on a flux
these systems have statistical properties that depend only dine. This approximation is valid for all scattering angles,
the symmetries of the system, and can be described by raaiso in the forward scattering direction. We show that these
dom matrix theory[2—4]. Ordinary billiards are used to contributions are necessary in order to cancel discontinuities
model systems that are invariant under time inversion anéh periodic orbit contributions that occur when the position
are described by the Gaussian orthogonal ensef@®E).  of the flux line is changed and crosses a periodic orbit. We
The introduction of an additional flux line allows us to study also discuss the importance of diffractive orbits in the semi-
a further universality class since the flux line breaks the timeclassical limit.
reversal symmetry. If the flux strength is sufficiently large  This paper is organized as follows. In Sec. Il we consider
(when considering levels in a fixed energy ranties corre-  the scattering on a flux line in a plane, and derive a uniform
sponding universality class is that of the Gaussian unitar@pproximation for the Green function. With this input, in
ensemble(GUE), but by varying the flux strength one can Sec. Ill we derive a uniform approximation for semiclassical
investigate also the GOE-GUE transition or parametric cor<ontributions to the density of states from isolated diffractive
relations in the GUE regime. Another application is for inte- orbits that are scattered once on a flux line. As an example of
grable billiard systems where the introduction of a flux linea system with nonisolated diffractive orbits, in Sec. IV we
can break the integrability of the quantum billigi], or to  consider the integrable circular billiard with a flux line in its
use billiards with a flux line to model the properties of quan-center. The results are discussed in Sec. V.
tum dots(see e.g.[6]).
A major advantage in all these applications is that the
classical trajectories are not changed by the presence of a Il. A FLUX LINE IN A PLANE
flux line, except for the set of orbits of measure zero that hit
the flux line. In a semiclassical analysis the same set of p
riodic orbits appears independent of the flux strength, an
only the semiclassical contributions of these orbits ar
changed. For example, in approximations to the density o
states the periodic orbit contributions have an additiona
phase 2rmea, wherea is related to the flux strength amdis
the number_of_ times the orbit win_ds ar_ound the flux line. o Green function that will be used in Sec. IIl.
However, this is not the only semlclas_smal Qﬁect of a flux The Schfdinger equation for a particle with masand
Ilne._lts presence alsp leads to wave .dlffracuon, tha.t can.b hargeq in a magnetic field in two dimensions is given in
semiclassically described by an additional set of trajectorieg; o ssian units by
that are closed but not periodic, and which start and end on
the flux line. In semiclassical arguments these so-called dif-

The scattering of a wave function on a flux line in a plane
vithout boundaries has been studied in great detail since the
roblem was first treated by Aharonov and Bofifh There
xists, for example, an exact integral representation for the
ropagator. A review on the quantum effects of electromag-
etic fluxes is given in Refl8]. In this section we review
some of the results and derive a uniform approximation for

fractive orbits are often neglected since their semiclassical 1 q |?
contribution is estimated to be of ordgfi smaller than the vl 7V A Y(N=E¥(N), (€N
*Present address. and for a flux line the vector potential can be chosen as
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which describes a magnetic field with fldx that is concen-
trated in form of a delta-function in the origin.

In polar coordinates the Schtimger equation with vector
potential(2) has the form

2
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wherea=q®/(27hc) andk=2ME/#. The solutions that
are regular in the origin are given bynge 7, ke R )

[ k
Vnk(r,¢)= EJ‘m—a‘(kr)eXF{im(ﬁ},

where the normalization is chosen such that
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as follows from the orthogonality relations of the exponential

and the Bessel functiori®]. It is sufficient to consider only
values 0<«=<0.5, since the solutions for other values wof
can be obtained by a multiplication of @é{dependentphase
factor and possibly a complex conjugation.

With the normalized solutiofEq. (4)] the propagator can
be written down directly:
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wherer - andr.. are the smaller and larger valuesroand
ro, respectively.

For further evaluations the representation in the basis of
the angular momentum eigenstates is not convenient. How-
ever from the sum in Eq6), one can derive an exact integral
representation for the propagat@ee Ref[8]). It involves
an integral over Hankel functions. In the following we use an
approximation to this integral representation that is obtained
after replacing the Hankel functions by their leading
asymptotic form. This gives a semiclassical approximation
for the propagator that is valid if Q<1 andMrry/t>#,

i.e., for times that are not too long or distances that are not
too close to the flux line:

M iM )
Ka(r,ro,t)~mex Z_ht(r_rO) +ia(d— o)

M sin(ar) iM
TR

i [2Mrry [ b= ¢y
+§(¢—¢0)}K< it cos( 5 ))

®
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The angles in Eq(8) have to be chosen such tHat— ¢,

<1, and the functiorK(z) is described below. The semi-
classical propagator in E@8) (and also the exact propaga-
tor) consists of two parts. The first part is almost identical to
the propagator in a free plane with the difference of an ad-
ditional phase proportional tee. Semiclassically it can be
interpreted as the contribution from the direct path figyo

r. The additional phase results from the dependence of the
Lagrangian on the vector potential. The second term in Eq.
(8) describes the scattering on the flux line, and is discussed
in more detail in connection with the Green function. Both
terms are discontinuous in the forward directidmh,— ¢g|

=, but the sum is continuous and uniformly valid for all
values of¢ and ¢y.

and in the same way one obtains an exact representation for The functionK(z) in Eq. (8) is a modified Fresnel func-

the Green function,

tion that is defined by
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FIG. 1. Real and imaginary parts of the modified Fresnel fundti¢r) (full line) and its asymptotic approximatididotted line.

For the second part we express the Fresnel function by inte-

1 T * L2 L
K(z)= —=exp| —iz?—i— J dyéYy ral (11), and arrive at
@=1 p{ 4} dy gral (11)
1 Cim iM si
=5e “erfo(e” "z), 9 Gy(r,rg,E)~— ———— I"(amT I|mj dt
e—0
and it has the following properties o 1 1
J dz- —ex (r +r9)?
1 iml4 t 24 ¢o ¢_¢ 2ht
K(0)=5, K(z)~ , |z 0o, 2
©)=3. K@~ 7= [z= °
3 + Mrroz i HE+]
—§<arg(z><7”. 10 <¢ Bo)—i ———+ t(E+is) .
(14

An important alternative representation kK{z) is given by
the integral 3, z>0) This double integral has a stationary point aft]=(0t)
1 fis wheret, = M/(2E)(r +ry) is the classical time for the path
K(\/,Ez)= _f dx _ (12) from r to rqy via the origin at energ¥. .In order to evaluate
2mi ) —i Xtz the integral we expand the exponent in Et) up to second
order around the stationary point. Then the integral dver
Due to this form, the functiorK arises in semiclassical can be evaluated by stationary phase approximation, since
evaluations of oscillatory integrals in which a pole of the the stationary point at=t, is well separated from the pole
integrand is close to a stationary point. In Fig. 1 we show thextt=0. In the integral over, however, thez dependence of
real and imaginary parts of the functié(z) for positivez.  the denominator has to be taken into account, and this again
The function has its largest absolute valuga, and from  yields a modified Fresnel function. In this way a uniform
approximatelyz=3 on it agrees well with its asymptotic approximation for the diffractive part of the Green function
approximation Eq. (10)]. is obtained,
With the relation between the propagator and the Green
function in Eq.(7), one can obtain a uniform approximation
for the Green function. We consider the contributions from M sin(a )2
Gq(r,ro,BE)~ ————="¢6x
7ThVK(r+rg)

the two parts of the propagator separately. These parts are ¢
called the geometrical and the diffractive part in the follow-
ing: i 2krrg d— g
+§(¢_¢0)]K[ A\ COS( > ”
Ga(rer!E):Gg(rarOIE)+Gd(r1r01E)' (12) 0
(15

efiﬁx2

ik(r+rg)

For the first part in Eq(8), one can evaluate the integral in
Eq. (7) by stationary phase approximation, ar_1d one Obtalns\Nhere again the angular coordinates have to be chosen such
analqgously FQ the propagator, the free semiclassical Gree[ﬂat|¢— ¢o|= . This approximation for the Green function
function modified by a phase will be the ingredient for the derivation of semiclassical con-
M tributions of diffractive orbits in trace formulas in Sec. Ill. It
Gy(r,ro,E)~ exol iklr=ral+iald— is valid as long akr, kro>1.
oMo E) h2\2ak|r—r| | o (6= o) We now consider an approximation to this expression that
is valid if | — ¢¢| is not too close tar. Then the argument
: 377} (13) of the Fresnel function can be replaced by its leading

'y asymptotic tern(10), and yields
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FIG. 2. Real and imaginary parts for different approximations of the Green fun@jgn,ry,E) (in dimensionless unité =2M=1)
withr=1,r,=2, k=5, anda=0.4. Full line: exact result; dotted lin&(r,rq,E); dashed line: GTD approximation; and dash-dotted line:
uniform approximation.

smaller for most values ap— ¢, except near the end points

M si
) ) exp{ ik(r+rg) ¢ — ¢po= = m where it diverges. This divergence is removed
— O)

Gy(r,rg,E)=~
by the uniform approximation in Eq15) (dash-dotted ling
for which the difference with the exact line can hardly be
seen, even though we chose relatively small valuds @ind

. (16)  kro.

27kh? rrocos{ 5

i T
(o) +im

Ill. SEMICLASSICAL CONTRIBUTIONS

This approximation is of the general form that is obtained
OF ISOLATED DIFFRACTIVE ORBITS

within the geometrical theory of diffractiofGTD) (see, e.g.,

Ref. [10]) For the derivation of semiclassical approximations in bil-
52 liard systems it is convenient to apply the boundary integral

v method. It provides an alternative formulation of the quan-

Ga(r.ro,B)=~ 557 Go(r,08) D¢, 60 Go(01o, E). tum mechanical eigenvalue problem in terms of an integral

17 equation along the billiard boundary. All semiclassical con-

. o ) tributions due to diffraction in billiard systems that go be-
In this theory the scattering is described by a free Gree@ond the GTD approximation have so far been derived by
function fromr, to the scattering source at the origin, mul- this method11,12.
tiplied by a diffraction coefficienD(¢, ¢,) that contains the  The houndary integral method has been developed for bil-
information about the particular scattering process and a futliard systems without internal fieldsee, e.g., Ref$13,14),
ther free Green function from the origin to the pomtA byt it can be extended to more general situations. In[R&f.
comparison with Eq(16) shows that the diffraction coeffi- Tijagoet al., derived an integral equation for billiard systems

cient for the present case is given by with magnetic field which is described by a vector potential
) in the Coulomb gauge. The resulting integral equation has
D( . bo) = 2sinam) exp{i ¢_¢0] (19  the same form as for billiards without field. For a billiard
10 d— g 2 system with a flux line and Dirichlet boundary conditions,
COS{ 2 ) one obtains
Term (16) can be interpreted as the contribution of a trajec- _ZJ' ds' a:G.(r',r,E)u(r’)=u(r) (19)
tory that runs fromr, to the origin and then to. It is of o ’

orderk™ 2 smaller than the contribution of the direct trajec-
tory fromrg tor in Eq.(13). However, the GTD approxima- Wwhere from here on we use units in whigk=2M =1. The
tion breaks down in the forward directionp— ¢o|=m,  difference from the field free case is that the Green function
where the diffraction coefficientl8) diverges. This reflects in Eq. (19) is the one for a flux line in a plane and the
the fact that the diffractive part of the Green function has asolutionsu(r) are the complex conjugate of the normal de-
different leading asymptotic term in the forward direction. rivatives of the wave functions. The form of the integral
Here the diffractive trajectory contributes in the same ordeequation in Eq(19) is different from that in Ref[15] since
in k as the direct trajectory. The uniform approximatid®)  we applied an additional normal derivative to the equation in
interpolates between these two different asymptotic regimerder to obtain a nondivergent integral kernel. Also the
In Fig. 2 we compare the different approximations to theGreen function differs by a factor{(8) from that in Ref.
Green function with the exact resulf). The dotted line is [15].
the geometrical partl3). The approximation is already rea-  In Eq. (19) the pointsr andr’ lie on the boundary, the
sonably good, but one can still see a clear deviation from th@osition ofr’ is parametrized bg’, andd; denotes the out-
exact curve. By adding the diffractive part in the GTD ap-ward normal derivative at. The integral is evaluated along
proximation (dashed ling the difference becomes much the boundangD of the billiard system. The left-hand side of
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and one diffractive Green function. This integral can be con-
siderably simplified by applying a composition law for the
geometrical part of the Green functions,

Gg”>(r,r’,E)~(—2)”f ds,- - -ds,
JdD

X Gy(r1,1",E)

Xaﬁng(erlyE)' : .ﬁanGg(r,rn,E),
FIG. 3. Example of a periodic orbit, labeled by and a diffrac- (22
tive orbit with one scattering event, labeled &y

where the approximate sign denotes that the integrals are
Eq. (19) can be abbreviated bu(r), where is the inte- gvaluated in stationary phgse approximation. The composi-
gral operator acting on. Equation(19) is a Fredholm equa- tion law was proved for ordinary billiard systems in Ref2]

tion of the second kind, and it has nontrivial solutions only if @nd it is a semiclassical version of the multiple reflection

the determinan (E):=def1— O(E)] vanishes. This condi- expansion of the Green function of Balian and Bloch. Since

tion determines the quantum energies of the problem. For the presence of a flux line adds only a phase to the Green
quant 9 P s unction which does not effect the stationary points in lead-
summary of the properties of the Fredholm determinan

. . - . X : ng order, the composition law holds also in the present case
A(E) for two-dimensional billiards without fields with cor- o 4 phase is simply additive. The semiclassical expres-
responding references, see Réf)].

. (n) .
From the condition of the vanishing of the Fredholm de->"o" forGy™ is then(see Ref{12])
terminant, one can obtain an expression for the density of

states in terms of the integral operafr It is given by 1 . @ 3w
Gg;n)(rzyﬁ,E):Z —————€X ikL—i—v—iT
n \/87Tk|M12|

B 1d z“’:l -
d(k)—dsm(k)Jr;m(lmn:lﬁTrQ(k), (20

where
Tr QN(k)z(_z)nJ ds;---ds,d; G,(rp,r1,E) Here the sum runs over all trajectories, labeledyqy which
aD ! run fromr, tor, and are reflected times on the boundary in

betweeng,, is the total winding angle of a trajectory around
the flux line. It can be written a&,,=27m+ A ¢, wherem

(21) is an integer andA¢|<. Furthermore,M,, is the 12-
The sum in Eq(20) is not convergent for red, and for the element of the stability matrix, is the length of the trajec-

derivation we assume thathas a sufficiently large imagi- Y, andv is the number of conjugate points from to rp.
nary part and that Re>0. The density of states in E¢RO0) The stability matrixM is evaluated at unit energy and is
has a smooth part and a sum over oscillatory integrals. A&nergy independent. We use a tilde here in order to distin-
semiclassical evaluation of the oscillatory integrals yields theguish the quantities from the corresponding ones for the dif-
leading semiclassical contributions to the density of state§active orbit. All quantities depend on the particular trajec-
from periodic orbits and diffractive orbits. These contribu-tory, but in order to avoid complicated notation an additional
tions can be separated by writi®, as sum of its geometri- indexy, is dropped. With Eq(22) one obtains the following
cal and diffractive part. Then Eq21) consists of 2 terms. ~ expression for the partial contribution to the level density
The periodic orbit contributions are contained in the termfrom diffractive orbits with one scattering event amdeflec-
that contains only geometrical Green functions. By evaluattions on the boundary:

ing this term in the stationary phase approximation, one ob-

X33, Ga(r3,r2,E) -+ -9 Gulry,rn,E).

tains the usual Gutzwiller expressiph?7] for isolated peri- 4 d

odic orbits in billiard systems, modified by an additional dpar=—Im WJ dsldszﬁﬁlGd(rz,rl,E)

phase Zrma, wherem is the winding number of the orbit . 9P

around the flux line. The terms witrdiffractive Green func- x 1“762Gén72)(r1,r2,E)- (24)

tions, on the other hand, contain the contributions of diffrac-

tive orbits that are scattereldtimes on the flux line. An

example of a periodic orbit and a diffractive orbit with one  We now insert Eqs(23) and (15) with Eq. (11) for the

scattering event is shown in Fig. 3. semiclassical and diffractive Green functions, respectively.
In this paper we consider only diffractive orbits that are The normal derivative gives in both cases in leading order a

scattered once on a flux line. We thus have to evaluate afactorik cosB, whereg is the angle between the normal and

integral with a product oh—1 geometrical Green functions the outgoing trajectory. We obtain
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d k cosB,cosB,sina) vv_hereB dgnotes a bqundary contribution whose origirj is the
dyar= IM 2 — discontinuity of the diffractive part of the Green function. It
-2 dK 23V My (ry+12) is canceled by a corresponding boundary contribution from
the geometrical part of the Green function. In E2g), L and
T A¢ M denote the length and stability matrix of the orbit, respec-
xXexp —I EV’L'O“f’Zl_' Y r (25 tively, and v is the number of conjugate points along the
orbit. x is given by
where
~ 2Krqr . M2
. exp{ik(L+rl+r2)—ir +1r222] 0 if =30
|=f dsidszf dz i3 0 K= My, (29
D —iow . 1
1 -
Z+C0S—5- if TrM—2<0’
(26)

The main part in the derivation consists in the evaluation ofind 7=1—2«.
the diffraction integrall. If all three integrals are evaluated  With Eq. (28), and noting that the derivative in leading
by a stationary phase approximation, one obtains the contriorder gives a factoriL), one obtains the final result for the
bution of diffractive orbits in the GTD approximation. This contribution of a diffractive orbit:
expression diverges whej ¢|= . In order to obtain a
semiclassical approximation that is uniformly valid for all . KL — i f24 b 1A BI2
angles, one has to take the dependence of the denominator on du(K) = — 27L sin(am)e : 2

; : ; . ; (k)=—R
the integration variables into account. One can do this by ¢ (A
expanding the exponent, in E(R6) up to second order in T sm( 7) ‘ VITrM=2]

S1, Sp, andz, and the denominator up to first order in these
Ag| [ 2k|M ]
°°‘7‘ =2 | (39
(27)

variables. In this way, in the denominator one obtains
This method corresponds to a particular choice of a unifornwhere u=wv+ « agrees with the usual definition of the
approximation. It yields an approximation that is correct atMaslov index for periodic orbits.
the “optical boundary”|A ¢|= 7 and in the GTD limit, and Formula(30) is the main result of this paper. It describes
it interpolates between them. There are other possibilities tthe contribution of a diffractive orbit to the density of states,
obtain a uniform approximation, for example by mapping theand is valid for all scattering angles¢ and for 0<a<1. It
exponent onto a quadratic function in the three variables ang assumed that the orbit is isolated and generic, in particular
then choosing an appropriate approximation for the amplithat TrM #2 and thatM ;,#0. If these conditions are not
tude function. This reflects the fact that uniform approxima-gatisfied then the formula has to be modified. This is analo-
tions are in general not unique. For example, a different ingoys to typical semiclassical approximations in terms of
terpolating approximation can be obtained by dropping thg|assical trajectories. For example, periodic orbit contribu-
sine term in Eq(27) which corresponds to replacing it by its tjons to the density of states have to be modified if the orbits
value at the optical boundary. occur in families or undergo bifurcatigease TiM =2), and

~ The evaluation of the integralis rather lengthy. It con-  contributions to the Green function have to be modified if the
sists in carrying out the expansions and performing lineafing| point of a trajectory is conjugate to the initial point
transformations of the variables such that, finally, the de'(caseM12=O). An example for a system with families of
nominator depends only on one of the variables and the ingjtfractive orbits is treated in Sec. IV. Finally we note that a
tegral can be expressed in terms of the modified Fresn&ljigntly simpler approximation than E¢B0) can be obtained
function. A comparison with Ref12] shows, however, that by dropping the sine term in the denominator in E3f) and
the same diffraction integral occurs for the diffraction on replacing the cotangent by a cosine, corresponding to the
billiard corners. For that reason, the calculations do not havgiscyssion after Eq27).

to be done again, and the result can be inferred from this The yse of the full Fresnel function in EBO) is neces-

XK|i*
Ag¢ Apg 1/(s;€C0SB1 S,C0SBsr\ . Ay !
COS=—~C0S— + = — sin
2 2 2 rq ro 2

paper. One hasc(0) sary in an angular region around the forward direction with
. o width of order k=2, For angles outside this range the
J' dSlf dszfl dz exp{ik(L+ritro—cz)} Fresnel function can be replaced by its leading asymptotic
- — S $1C08B;  $,C08f3, form, which results in
2rq 2r,

4mPsgn(a)T 2r115| My d (k)~Re< L sin(m) ! ex iI(L—iz
- \/ g K)= v
k|b|cosB;cosB, Y c|TrM—2] 7 COSABI2) \27kIM ) 2

2k|M12| KL —i ~ ) i ) 37
~ —im(v+k—v)/2 - — —

a
_ 31
x K 5 (31)

P K
|
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in order to make semiclassical approximations continuous if
the position of a flux line is changed.

IV. DIFFRACTIVE ORBITS
IN THE CIRCULAR BILLIARD

A simple example in which diffractive orbits are not iso-
lated is a circular billiard with a flux line in its center. This
system is integrable since the energy and the angular mo-
mentum around the center are conserved. All diffractive or-

FIG. 4. Parts of a diffractive orbit and a nearby periodic orbit for bits run from the flux line to the boundary, and are reflected
k=0 andk=1. back directly onto the flux line. They appear in one- or more-

parameter families, and their lengths are multiples Bf 2
This agrees with the GTD approximation for the diffractive where R is the radius of the circle. Contributions of these
orbit [18]: diffractive orbits to the density of states were observed in
Ref.[19].
L We are interested in the leading order semiclassical con-
dg(k)= RE(;Gg(rz,rl)D(cﬁl,qﬁg) . (32) tributions of the diffractive orbits. For this purpose one can-
not apply formula30) since the orbits have a stability matrix

) o ] with trace 2. Although one can in principle obtain the dif-
It is a contribution that is of order 1k smaller than the fractive contributions from the boundary integral method, it
contribution of a isolated periodic orbit. In E(B2), G5 de-  is now much more convenient to start from the torus-
notes the contribution from the trajectogyto the geometri-  quantization conditions for integrable systerf&instein-
cal part of the Green function, wherg=r is the position of  Brillouin-Keller (EBK) conditiond. In this way one can ob-
the flux line. tain all leading order diffractive contributions to the density

In the opposite limiting case @A ¢|= 7 the uniform ap-  of states at once, even those for multiple diffraction.
proximation is of the same order as that of a periodic orbit The exact solutions of the Sclfiager equation are given
and it is discontinuous. Alsp| goes throughr, the contribu- by the solutions of the flux line in a plartd) with a different

tion makes a step of size normalization constant and the additional condition that the
wave functions have to vanish et R. From this condition
27L sin(am) follows that the energies are determined by the zeros of the
de(K) | agemo0—de(K)|age - gi0= — ——— Bessel functions Ep,,=#2%k2 /(2M), where k
(K] ag=m—0—de(K)|ag=—rs0 TV —2] m,n mn/ (2M) m.n

=]m-a/,n+1/R, andj, , is thenth zero of the Bessel func-
- tion with indexv.
X sinl kL— §M+(2m+ Dral. (33 The EBK quantization conditions yield semiclassical ap-
proximations to these energy levels. They have the forms

In order to understand this discontinuity we consider an
angleA ¢=7— & which is infinitesimally different fromar.

By examining the linearized motion around the diffractive
orbit one finds that there is, in general, a periodic orbit in an
infinitesimal neighborhood of the diffractive orbit. This orbit

is obtained from the conditions theg=dq’ anddp=dp’ 1 3g dr —h( - 3
—¢& (at energyE=1), where the primed and unprimed quan- 2 Pr= 4
tities are infinitesimal perpendicular deviations from the

starting point and end point of the diffractive orbit, respec-

tively. From these conditions one finds that the position of2U€ 0 the conservation of the angular momentum, the first
the periodic orbit is given bylg=— M ,/(Tr M —2). De- condition givesp,=#m and the second condition is evalu-

H : _ 2
pending on the sign of the left-hand side, i.e., on the value ofi€d 2WIt2h the energy conservation lad=(p;+(py
«, there can be two possible cases that are shown in Fig. 2 1a)“/r)/(2M), and yields
for positive A ¢ nearr.

1
> % dgp,=hm, mel,

, nh=0,12,.... (34)

If one moves the flux line in a way thét¢ goes through m—a| 3
7, then the flux line crosses this periodic orbit at the same \/kfn'nRZ—(m— a)?—|m— a|arccos R T + ik
instant. For the periodic orbit the semiclassical contribution m.n (35)

is also discontinuous, since the winding number of the peri-
odic orbit changes. For a primitive orbit the winding number
changes byt 1 if k=0 and by—1 if xk=1. By writing the  which determine,, as a function of the two quantum
product of sines in E33) as a sum of two cosines, one can numbersm andn.

show that the two discontinuities cancel exactly and the sum From Eq.(35) the periodic orbit contributions to the den-
of both contributions is continuous. This shows that the unisity of states are obtained by applying the Poisson summa-
form approximation for diffractive contributions is necessarytion formula[20]
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o

* o0 o ) , 1
dik)= > f dmf dne@m MmEN sk ) d (k= > "'—
MN=— J—c —3/4 NM=—o 7K
© 377
a+kR 1 202 _ 2 ; _ T
_ E d KR (m—a)? VKR —m exp{ZmM(m+a) 5 iN
M,N=-o Ja—kR wk X m
x exp{2mi (Mm+Nn(m,k))} 2miM —2iN arccos; o i
- kR 1 +la——a
= > f dm—kZ2RZ—mZ exp 27iM (Mm+ a) [ ]
MR=-= Jo Kk 37
oR sin 7N R
m| 3 =_ =
+2iN[ \/szZ—mz—marccosﬁ —;iN] T NZ& N 2’ (40
+[a——al. (36) where the prime denotes that the teri, 1) =(0,0) is ex-

cluded from the sum since it corresponds to a nonoscillatory
integral. The result in Eq(40) can be identified with the
We now consider the main semiclassical contributions tgoerimeter term in the asymptotic expansion of the mean den-
the integrals in Eq(36). Altogether these are four contribu- sity of states.
tion. One is the only nonoscillatory terid =N=0, which From the other end points of the integralsnat0, one
yields the leading area term for the mean density of states:obtains

)

iR 1
2 (kR 1 dy(k)=— > eXp[Zﬂ'iM a+2iNKR
_ = 202 _ m2— 1 P2 2 = N
da(k) kao dmyk“Rc—m 2kR . (37) 2 MMN;&N/z M_E
. . . . 37,
This agrees with the leading term in Weyl's lak/(27), - 7|N +[a——al=d§(k)+dg(k). (42
with areaA= 7R

The second main contribution arises from the stationaryyere the termdvl = N/2 have to be excluded from the sum
points of the integrals. A stationary phase approximationsince they have already been taken into account by the sta-
gives the contributions of the periodic orbits that have alsqionary phase evaluation. For convenience the sum is split

been obtained in Ref19], into two parts, corresponding to a summation over even and
odd values o, respectively.

w [N/2] 2K M For the first partN is replaced by R, the summation
dpo(k):sz Ngl IVRtR / 3sin?>7'rT indexM is shifted byN, and terms for positive and negative

7N values ofM are combined:
7™ 37 T o ®
; R sif 2maM
Xcos(ZNkRS|nW—7N+Z cog2mMa), dg(k)=——2 E 2 n v ]exp{iZN ra+2kR
T N=—o M=1
(39 3
- 7) +la——«a]
wheregy y=1 if M=N/2 andgy y=2 if M#N/2. This 2R % 37
factor arises from the fact that the stationary points Nor =—(1-2a) 2 sin(ZN(ZkR— _))
=N/2 lie on the end poinin=0 of the integrals in Eq(36) ™ N=1 2
and give only half the contribution. X sin(ra2N); (42)

The remaining two contributions follow from the bound-
aries of the oscillatory integrals. They can be obtained by a@nd for the second paN is replaced by R+ 1, the summa-
integration by part, which yields tion index M is shifted byN, and terms foiM=1 andM
<1 are combined:

‘ 00| — _: 9@ itz o 2R «  w Sifma(2M-1)] p{
b.c. of[fmdxg(x)e ] |f,(z)e (39) (k) — N;x ME:l V=1 exp i(2N+1)

X

3
. , 7Ta+2kR——”+[a—>—a]
for an upper end of an integration rangez i on the lower 2

end of an integration range the end point contribution is 7R

given by minus the right hand side of E@®9). =— > sin( (2N+1)
With Eq. (39), for the contribution fromm=kr one ob- T N=0

tains Xsin(ra(2N+1)). (43

kR T
2
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The formulas for evaluating the summations in E¥0), 03 T . — T —
(42), and(43) can be found in Ref[21] and are valid for O 02} §
<a<l. 01} A J -
Collecting all results, the complete trace formula is given 00} —— Y ]
by g o ]
5 ozf BRSEARES ]

w  [N/2] 3 i ooaf ]
— 4k 7TM Q 03+ Py N ] i
~ + — R3sin®—— I S
0000+ 3, 3, 0un iy o | -
05 004 B
oM 37 T I weelessiuaea g
X cog 2NkRsin — — —N+ — |cog27M ) WrF wHBOoas §
N 2 4 _0.7 1 2 1 A 1 1 s 1 1
1 2 3 4 5 6 7 8 9
L

" 2R 37 )
+> — sm(ZNkR— 7N)sm(7-rNa)
N=1 T FIG. 5. Fourier transform of the oscillatory part of the density of
* 2R states for the circular billiard witle=0.25 andR=1 (full line) in
—2a 2 — sin(4NkR—37N)sin(27Na). (44) comparison with the semiclassical approximat{dotted ling. Di-
N=1 T mensionless units are used in whitk-2M = 1. Inset: Magnifica-

) ) o tion of one peak.
It consists of the mean level density, the contributions of

periodic orbits, and the contributions of diffractive orbits Gaussian cutoff of the oscillatory part of the density of

which are smaller by an ordér *? than those of the peri- states. The value af is chosen to ber=0.25, since for this

odic orbits. The formula is similar to the corresponding onevalue the periodic orbit contributions start lat=8R. The

for a harmonic oscillator with a flux ling22]. difference between the two curves cannot be seen on this
The diffractive orbit term in Eq(44) can be given a more scale.

direct interpretation since it can be transformed into a sum of

6 functions by using the Poisson summation formula. One V. CONCLUSIONS

obtains _ o _
One general property of uniform approximations for iso-

R & kR 3 « lated diffractive orbits is that they make semiclassical ap-
dg(k)= o 2 [ (7— Z+ 2 +n proximations continuous as a system parameter is changed.
e They cancel discontinuities in semiclassical contributions of
KR 3 a aR = periodic orbits. In billiards with concave boundaries or with
- (—— ———+n||+— > corners, those discontinuities are connected with the appear-
T 4 2 T n=-e ance or disappearance of periodic orbits. In the present case
2kR 3 2kR 3 the discontinuity is due to a phase change in periodic orbit
X|8l — —=+a+n —5(————a+n ) contributions. In addition, the diffraction on a flux line is
™ 2 T 2 very similar to the diffraction on corners. The final formula

(45) is expressed in terms of the same interpolating function, but
it is also simpler since it consists only of one term instead of
The argument of one of th&functions can be identified with  four. This suggests, for example, that a semiclassical study
the semiclassical quantization condition for eigenvalues withof two-dimensional systems which are nonintegrable but in
vanishing angular momentumm&0): kR~=~mal/2+3mw/4  which the classical motion is still restricted to a two-
+nm. Since the full trace formula produces delta peaks atlimensional surface in phase space, might be performed
the eigenvalues given by the EBK conditio(85), the dif-  more easily on billiards with a flux line instead of pseudoin-
fractive orbits have the following role: they contribute to tegrable polygonal billiards.
peaks at eigenvalues with vanishing angular momentum, and In this paper we considered only diffractive orbits that are
they cancel wrong peaks that are produced by the periodiscattered once on a flux line. The same method can be used
orbit sum. to obtain semiclassical contributions of diffractive orbits
The fact that the periodic orbits produce wrong peaks camith multiple scattering, but the formulas become increas-
be understood by noting that the periodic orbit contributionsngly more complex and have to be expressed in terms of
(38) are invariant undetr— — . Due to this symmetry the multiple Fresnel integrals. The treatment of an integrable bil-
periodic orbits give also rise to wrong peaks BRR liard with a flux line like the circular billiard is much sim-
~—gqal2+37/4+na. The first two terms in Eq45) pro-  pler. There all leading order diffractive contributions includ-
vide a correction to this failure in the approximation for ing those from multiple diffraction can be obtained in one
states with zero angular momentum. The other two terms istep from the EBK conditions. Moreover, they can be
Eq. (45 are necessary in order that the approximation issummed up and shown to contribute only to states with zero
invariant undera— 1— «, since the spectrum is invariant angular momentum.
under this replacement. One remaining question is whether in semiclassical argu-
A test of the trace formuld44) is presented in Fig. 5, ments concerning spectral statistics in chaotic systems it is
which shows a comparison between quantum mechanicalufficient to consider only periodic orbits. One argument for
and semiclassical results for the Fourier transfqmith a  this is that the semiclassical contributions of most diffractive
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orbits (GTD region are by an order 1/k smaller than those orbits in the transitional region decreases like/KL/ How-

of periodic orbits, wher& is the wave number. For scattering ever, the total number of diffractive orbits in the transitional

angles near the forward direction they contribute moreregion is still increasing exponentially due to the exponential

strongly, up to the order of a periodic orbit, but the corre-increase of all diffractive orbits. A similar argument can be

sponding angular regime of this transitional region decreasespplied to orbits with multiple scattering. It is not obvious

proportional to 1{k. So one might argue that diffractive that these orbits can be neglected. Moreover one can show

orbits become less and less important in the semiclassicéihat even in the GTD approximation diffractive orbits have a

regime. non-vanishing influence on spectral statistics in the semiclas-
Let us discuss this point in more detail. By applying thesical limit [23].

trace formula in order to resolve adjacent energy levels with

wave numbers of _ordek, one has to take into account all ACKNOWLEDGMENTS
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