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Semiclassical treatment of diffraction in billiard systems with a flux line
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In billiard systems with a flux line, semiclassical approximations for the density of states contain contribu-
tions from periodic orbits as well as from diffractive orbits that are scattered on the flux line. We derive a
semiclassical approximation for diffractive orbits that are scattered once on a flux line. This approximation is
uniformly valid for all scattering angles. The diffractive contributions are necessary in order that semiclassical
approximations are continuous if the position of the flux line is changed.@S1063-651X~99!11710-0#

PACS number~s!: 05.45.Mt, 03.65.Sq
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I. INTRODUCTION

Billiard systems with flux lines are simple dynamical sy
tems that can model the typical behavior of low-dimensio
quantum systems. One main application has been in the
vestigation of universal properties of quantum systems
are chaotic in the classical limit@1#. The high lying states of
these systems have statistical properties that depend on
the symmetries of the system, and can be described by
dom matrix theory@2–4#. Ordinary billiards are used to
model systems that are invariant under time inversion
are described by the Gaussian orthogonal ensemble~GOE!.
The introduction of an additional flux line allows us to stu
a further universality class since the flux line breaks the tim
reversal symmetry. If the flux strength is sufficiently lar
~when considering levels in a fixed energy range! the corre-
sponding universality class is that of the Gaussian unit
ensemble~GUE!, but by varying the flux strength one ca
investigate also the GOE-GUE transition or parametric c
relations in the GUE regime. Another application is for int
grable billiard systems where the introduction of a flux li
can break the integrability of the quantum billiard@5#, or to
use billiards with a flux line to model the properties of qua
tum dots~see e.g.,@6#!.

A major advantage in all these applications is that
classical trajectories are not changed by the presence
flux line, except for the set of orbits of measure zero that
the flux line. In a semiclassical analysis the same set of
riodic orbits appears independent of the flux strength,
only the semiclassical contributions of these orbits
changed. For example, in approximations to the density
states the periodic orbit contributions have an additio
phase 2pma, wherea is related to the flux strength andm is
the number of times the orbit winds around the flux lin
However, this is not the only semiclassical effect of a fl
line. Its presence also leads to wave diffraction, that can
semiclassically described by an additional set of trajecto
that are closed but not periodic, and which start and end
the flux line. In semiclassical arguments these so-called
fractive orbits are often neglected since their semiclass
contribution is estimated to be of orderA\ smaller than the
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contributions of periodic orbits. Such an estimate is, ho
ever, only valid if the scattering angle is not too close to t
forward direction. In the forward direction, diffractive orbit
contribute in the same order as periodic orbits.

In this paper we investigate the semiclassical contri
tions of diffractive orbits to the density of states. We deri
an approximation for orbits that are scattered once on a
line. This approximation is valid for all scattering angle
also in the forward scattering direction. We show that the
contributions are necessary in order to cancel discontinu
in periodic orbit contributions that occur when the positi
of the flux line is changed and crosses a periodic orbit.
also discuss the importance of diffractive orbits in the se
classical limit.

This paper is organized as follows. In Sec. II we consid
the scattering on a flux line in a plane, and derive a unifo
approximation for the Green function. With this input,
Sec. III we derive a uniform approximation for semiclassic
contributions to the density of states from isolated diffract
orbits that are scattered once on a flux line. As an exampl
a system with nonisolated diffractive orbits, in Sec. IV w
consider the integrable circular billiard with a flux line in i
center. The results are discussed in Sec. V.

II. A FLUX LINE IN A PLANE

The scattering of a wave function on a flux line in a pla
without boundaries has been studied in great detail since
problem was first treated by Aharonov and Bohm@7#. There
exists, for example, an exact integral representation for
propagator. A review on the quantum effects of electrom
netic fluxes is given in Ref.@8#. In this section we review
some of the results and derive a uniform approximation
the Green function that will be used in Sec. III.

The Schro¨dinger equation for a particle with massM and
chargeq in a magnetic field in two dimensions is given
Gaussian units by

1

2M F\i ¹2
q

c
AG2

C~r !5EC~r !, ~1!

and for a flux line the vector potential can be chosen as
3982 © 1999 The American Physical Society
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A5
F

2pr
f̂, “3A5Fd~r !ẑ, “•A50, ~2!

which describes a magnetic field with fluxF that is concen-
trated in form of a delta-function in the origin.

In polar coordinates the Schro¨dinger equation with vecto
potential~2! has the form

2F ]2

]r 2
1

1

r

]

]r
1

1

r 2 S ]

]f
2 ia D 2GC~r ,f!5k2C~r ,f!,

~3!

wherea5qF/(2p\c) andk5A2ME/\. The solutions that
are regular in the origin are given by (mPZ, kPR1)

Cm,k~r ,f!5A k

2p
Jum2au~kr !exp$ imf%, ~4!

where the normalization is chosen such that

E
0

2p

dfE
0

`

drrCm,k~r ,f!Cm8,k8
* ~r ,f!5dm,m8d~k2k8!,

~5!

as follows from the orthogonality relations of the exponen
and the Bessel functions@9#. It is sufficient to consider only
values 0<a<0.5, since the solutions for other values ofa
can be obtained by a multiplication of a (f-dependent! phase
factor and possibly a complex conjugation.

With the normalized solution@Eq. ~4!# the propagator can
be written down directly:

Ka~r ,r0 ,t !5 (
m52`

` E
0

`

dkCm,k~r ,f!Cm,k* ~r 0 ,f0!

3expH 2
i

\

\2k2

2M
tJ

5 (
m52`

`
M

2p i\t
Jum2auS rr 0M

\t DexpH im~f2f0!

2
M ~r 21r 0

2!

2i\t
2 i

p

2
um2auJ , ~6!

and in the same way one obtains an exact representatio
the Green function,
l

for

Ga~r ,r0 ,E!5 lim
«→0

1

i\E0

`

dtKa~r ,r0 ,t !expH i

\
t~E1 i«!J

5 lim
«→0

(
m52`

` E
0

`

dk8Cm,k8~r ,f!

3Cm,k8
* ~r 0 ,f0!

1

E1 i«2
\2k82

2M

5 (
m52`

`
M

2i\2
eim(f2f0)Jum2au~kr,!H um2au

(1) ~kr.!,

~7!

wherer , and r . are the smaller and larger values ofr and
r 0, respectively.

For further evaluations the representation in the basis
the angular momentum eigenstates is not convenient. H
ever from the sum in Eq.~6!, one can derive an exact integr
representation for the propagator~see Ref.@8#!. It involves
an integral over Hankel functions. In the following we use
approximation to this integral representation that is obtain
after replacing the Hankel functions by their leadin
asymptotic form. This gives a semiclassical approximat
for the propagator that is valid if 0,a,1 andMrr 0 /t@\,
i.e., for times that are not too long or distances that are
too close to the flux line:

Ka~r ,r0 ,t !'
M

2p i\t
expH iM

2\t
~r2r0!21 ia~f2f0!J

2
M sin~ap!

p i\t
expH iM

2\t
~r 1r 0!2

1
i

2
~f2f0!J KSA2Mrr 0

\t
cosS f2f0

2 D D .

~8!

The angles in Eq.~8! have to be chosen such thatuf2f0u
<p, and the functionK(z) is described below. The sem
classical propagator in Eq.~8! ~and also the exact propaga
tor! consists of two parts. The first part is almost identical
the propagator in a free plane with the difference of an
ditional phase proportional toa. Semiclassically it can be
interpreted as the contribution from the direct path fromr0 to
r . The additional phase results from the dependence of
Lagrangian on the vector potential. The second term in
~8! describes the scattering on the flux line, and is discus
in more detail in connection with the Green function. Bo
terms are discontinuous in the forward direction,uf2f0u
5p, but the sum is continuous and uniformly valid for a
values off andf0.

The functionK(z) in Eq. ~8! is a modified Fresnel func
tion that is defined by
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FIG. 1. Real and imaginary parts of the modified Fresnel functionK(z) ~full line! and its asymptotic approximation~dotted line!.
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K~z!5
1

Ap
expH 2 iz22 i

p

4 J E
z

`

dyeiy2

5
1

2
e2 iz2

erfc~e2 ip/4z!, ~9!

and it has the following properties

K~0!5
1

2
, K~z!;

eip/4

2zAp
, uzu→`,

2
p

4
,arg~z!,

3p

4
. ~10!

An important alternative representation ofK(z) is given by
the integral (b, z.0)

K~Abz!5
1

2p i E2 i`

i`

dx
e2 ibx2

x1z
. ~11!

Due to this form, the functionK arises in semiclassica
evaluations of oscillatory integrals in which a pole of t
integrand is close to a stationary point. In Fig. 1 we show
real and imaginary parts of the functionK(z) for positivez.
The function has its largest absolute value atz50, and from
approximatelyz53 on it agrees well with its asymptoti
approximation@Eq. ~10!#.

With the relation between the propagator and the Gr
function in Eq.~7!, one can obtain a uniform approximatio
for the Green function. We consider the contributions fro
the two parts of the propagator separately. These parts
called the geometrical and the diffractive part in the follo
ing:

Ga~r ,r0 ,E!5Gg~r ,r0 ,E!1Gd~r ,r0 ,E!. ~12!

For the first part in Eq.~8!, one can evaluate the integral
Eq. ~7! by stationary phase approximation, and one obta
analogously to the propagator, the free semiclassical G
function modified by a phase

Gg~r ,r0 ,E!'
M

\2A2pkur2r0u
expH ikur2r0u1 ia~f2f0!

2 i
3p

4 J . ~13!
e

n

re

s,
en

For the second part we express the Fresnel function by i
gral ~11!, and arrive at

Gd~r ,r0 ,E!'2
iM sin~ap!

2p2\2
lim
«→0

E
0

`

dt

3E
2 i`

i`

dz
1

t

1

z1cos
f2f

2

expH iM

2\t
~r 1r 0!2

1
i

2
~f2f0!2 i

2Mrr 0z2

\t
1

i

\
t~E1 i«!J .

~14!

This double integral has a stationary point at (z,t)5(0,tcl)
wheretcl5AM /(2E)(r 1r 0) is the classical time for the pat
from r to r0 via the origin at energyE. In order to evaluate
the integral we expand the exponent in Eq.~14! up to second
order around the stationary point. Then the integral ovet
can be evaluated by stationary phase approximation, s
the stationary point att5tcl is well separated from the pol
at t50. In the integral overz, however, thez dependence of
the denominator has to be taken into account, and this a
yields a modified Fresnel function. In this way a unifor
approximation for the diffractive part of the Green functio
is obtained,

Gd~r ,r0 ,E!'
M sin~ap!A2p i

p\2Ak~r 1r 0!
expH ik~r 1r 0!

1
i

2
~f2f0!J KFA2krr 0

r 1r 0
cosS f2f0

2 D G ,
~15!

where again the angular coordinates have to be chosen
that uf2f0u<p. This approximation for the Green functio
will be the ingredient for the derivation of semiclassical co
tributions of diffractive orbits in trace formulas in Sec. III.
is valid as long askr, kr0@1.

We now consider an approximation to this expression t
is valid if uf2f0u is not too close top. Then the argumen
of the Fresnel function can be replaced by its lead
asymptotic term~10!, and yields
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FIG. 2. Real and imaginary parts for different approximations of the Green functionGa(r ,r0 ,E) ~in dimensionless units\52M51)
with r 51, r 052, k55, anda50.4. Full line: exact result; dotted line:Gg(r ,r0 ,E); dashed line: GTD approximation; and dash-dotted lin
uniform approximation.
ed

ee
l-

fu

-

c

c-
-

s
n
de

e
he

-
th
p
h

s
ed

be

il-
ral
n-
ral
n-
e-
by

bil-

s
ial
has
d
s,

ion
e
e-
al

in
he

g
f

Gd~r ,r0 ,E!'
M sin~ap!

2pk\2Arr 0cosS f2f0

2 D expH ik~r 1r 0!

1
i

2
~f2f0!1 i

p

2 J . ~16!

This approximation is of the general form that is obtain
within the geometrical theory of diffraction~GTD! ~see, e.g.,
Ref. @10#!

Gd~r ,r0 ,E!'
\2

2M
G0~r ,0,E!D~f,f0!G0~0,r0 ,E!.

~17!

In this theory the scattering is described by a free Gr
function from r0 to the scattering source at the origin, mu
tiplied by a diffraction coefficientD(f,f0) that contains the
information about the particular scattering process and a
ther free Green function from the origin to the pointr . A
comparison with Eq.~16! shows that the diffraction coeffi
cient for the present case is given by

D~f,f0!5
2 sin~ap!

cosS f2f0

2 D expH i
f2f0

2 J . ~18!

Term ~16! can be interpreted as the contribution of a traje
tory that runs fromr0 to the origin and then tor . It is of
orderk21/2 smaller than the contribution of the direct traje
tory from r0 to r in Eq. ~13!. However, the GTD approxima
tion breaks down in the forward directionuf2f0u5p,
where the diffraction coefficient~18! diverges. This reflects
the fact that the diffractive part of the Green function ha
different leading asymptotic term in the forward directio
Here the diffractive trajectory contributes in the same or
in k as the direct trajectory. The uniform approximation~15!
interpolates between these two different asymptotic regim

In Fig. 2 we compare the different approximations to t
Green function with the exact result~7!. The dotted line is
the geometrical part~13!. The approximation is already rea
sonably good, but one can still see a clear deviation from
exact curve. By adding the diffractive part in the GTD a
proximation ~dashed line!, the difference becomes muc
n

r-

-

a
.
r

s.

e
-

smaller for most values off2f0, except near the end point
f2f056p where it diverges. This divergence is remov
by the uniform approximation in Eq.~15! ~dash-dotted line!
for which the difference with the exact line can hardly
seen, even though we chose relatively small values ofkr and
kr0.

III. SEMICLASSICAL CONTRIBUTIONS
OF ISOLATED DIFFRACTIVE ORBITS

For the derivation of semiclassical approximations in b
liard systems it is convenient to apply the boundary integ
method. It provides an alternative formulation of the qua
tum mechanical eigenvalue problem in terms of an integ
equation along the billiard boundary. All semiclassical co
tributions due to diffraction in billiard systems that go b
yond the GTD approximation have so far been derived
this method@11,12#.

The boundary integral method has been developed for
liard systems without internal fields~see, e.g., Refs.@13,14#!,
but it can be extended to more general situations. In Ref.@15#
Tiagoet al.,derived an integral equation for billiard system
with magnetic field which is described by a vector potent
in the Coulomb gauge. The resulting integral equation
the same form as for billiards without field. For a billiar
system with a flux line and Dirichlet boundary condition
one obtains

22E
]D

ds8] n̂Ga~r 8,r ,E!u~r 8!5u~r !, ~19!

where from here on we use units in which\52M51. The
difference from the field free case is that the Green funct
in Eq. ~19! is the one for a flux line in a plane and th
solutionsu(r ) are the complex conjugate of the normal d
rivatives of the wave functions. The form of the integr
equation in Eq.~19! is different from that in Ref.@15# since
we applied an additional normal derivative to the equation
order to obtain a nondivergent integral kernel. Also t
Green function differs by a factor (28p) from that in Ref.
@15#.

In Eq. ~19! the pointsr and r 8 lie on the boundary, the
position ofr 8 is parametrized bys8, and] n̂ denotes the out-
ward normal derivative atr . The integral is evaluated alon
the boundary]D of the billiard system. The left-hand side o
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Eq. ~19! can be abbreviated byQ̂u(r ), whereQ̂ is the inte-
gral operator acting onu. Equation~19! is a Fredholm equa
tion of the second kind, and it has nontrivial solutions only
the determinantD(E)ªdet@12Q̂(E)# vanishes. This condi-
tion determines the quantum energies of the problem. F
summary of the properties of the Fredholm determin
D(E) for two-dimensional billiards without fields with cor
responding references, see Ref.@16#.

From the condition of the vanishing of the Fredholm d
terminant, one can obtain an expression for the density
states in terms of the integral operatorQ̂. It is given by

d~k!5dsm~k!1
1

p

d

dk
Im(

n51

`
1

n
Tr Q̂n~k!, ~20!

where

Tr Q̂n~k!5~22!nE
]D

ds1•••dsn] n̂1
Ga~r2 ,r1 ,E!

3] n̂2
Ga~r3 ,r2 ,E!•••] n̂n

Ga~r1 ,rn ,E!.

~21!

The sum in Eq.~20! is not convergent for realk, and for the
derivation we assume thatk has a sufficiently large imagi
nary part and that Rek.0. The density of states in Eq.~20!
has a smooth part and a sum over oscillatory integrals
semiclassical evaluation of the oscillatory integrals yields
leading semiclassical contributions to the density of sta
from periodic orbits and diffractive orbits. These contrib
tions can be separated by writingGa as sum of its geometri
cal and diffractive part. Then Eq.~21! consists of 2n terms.
The periodic orbit contributions are contained in the te
that contains only geometrical Green functions. By evalu
ing this term in the stationary phase approximation, one
tains the usual Gutzwiller expression@17# for isolated peri-
odic orbits in billiard systems, modified by an addition
phase 2pma, wherem is the winding number of the orbi
around the flux line. The terms withl diffractive Green func-
tions, on the other hand, contain the contributions of diffr
tive orbits that are scatteredl times on the flux line. An
example of a periodic orbit and a diffractive orbit with on
scattering event is shown in Fig. 3.

In this paper we consider only diffractive orbits that a
scattered once on a flux line. We thus have to evaluate
integral with a product ofn21 geometrical Green function

FIG. 3. Example of a periodic orbit, labeled byg, and a diffrac-
tive orbit with one scattering event, labeled byj.
f

a
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-
of

A
e
s
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-

l

-

an

and one diffractive Green function. This integral can be co
siderably simplified by applying a composition law for th
geometrical part of the Green functions,

Gg
(n)~r ,r 8,E!'~22!nE

]D
ds1•••dsn

3Gg~r1 ,r 8,E!

3] n̂1
Gg~r2 ,r1 ,E!•••] n̂n

Gg~r ,rn ,E!,

~22!

where the approximate sign denotes that the integrals
evaluated in stationary phase approximation. The comp
tion law was proved for ordinary billiard systems in Ref.@12#
and it is a semiclassical version of the multiple reflecti
expansion of the Green function of Balian and Bloch. Sin
the presence of a flux line adds only a phase to the Gr
function which does not effect the stationary points in lea
ing order, the composition law holds also in the present c
and the phase is simply additive. The semiclassical exp
sion for Gg

(n) is then~see Ref.@12#!

Gg
(n)~r2 ,r1 ,E!5(

gn

1

A8pkuM̃12u
expH ikL̃2 i

p

2
ñ2 i

3p

4

1 iaf21J . ~23!

Here the sum runs over all trajectories, labeled bygn , which
run fromr1 to r2 and are reflectedn times on the boundary in
between.f21 is the total winding angle of a trajectory aroun
the flux line. It can be written asf2152pm1Df, wherem

is an integer anduDfu<p. Furthermore,M̃12 is the 12-
element of the stability matrix,L̃ is the length of the trajec-
tory, andñ is the number of conjugate points fromr1 to r2.
The stability matrixM̃ is evaluated at unit energy and
energy independent. We use a tilde here in order to dis
guish the quantities from the corresponding ones for the
fractive orbit. All quantities depend on the particular traje
tory, but in order to avoid complicated notation an addition
indexgn is dropped. With Eq.~22! one obtains the following
expression for the partial contribution to the level dens
from diffractive orbits with one scattering event andn reflec-
tions on the boundary:

dpart5
4

p
Im

d

dkE]D
ds1ds2] n̂1

Gd~r2 ,r1 ,E!

3] n̂2
Gg

(n22)~r1 ,r2 ,E!. ~24!

We now insert Eqs.~23! and ~15! with Eq. ~11! for the
semiclassical and diffractive Green functions, respective
The normal derivative gives in both cases in leading orde
factor ik cosb, whereb is the angle between the normal an
the outgoing trajectory. We obtain
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dpart5Im (
gn22

d

dk

k cosb1cosb2sin~ap!

2p3AuM̃12u~r 11r 2!

3expH 2 i
p

2
ñ1 iaf212 i

Df

2
J I , ~25!

where

I 5E
]D

ds1ds2E
2 i`

i`

dz

expH ik~ L̃1r 11r 2!2 i
2kr1r 2

r 11r 2
z2J

z1cos
Df

2

.

~26!

The main part in the derivation consists in the evaluation
the diffraction integralI. If all three integrals are evaluate
by a stationary phase approximation, one obtains the co
bution of diffractive orbits in the GTD approximation. Thi
expression diverges whenuDfu5p. In order to obtain a
semiclassical approximation that is uniformly valid for a
angles, one has to take the dependence of the denominat
the integration variables into account. One can do this
expanding the exponent, in Eq.~26! up to second order in
s1 , s2, andz, and the denominator up to first order in the
variables. In this way, in the denominator one obtains

cos
Df

2
'cos

Df0

2
1

1

2 S s1cosb1

r 1
2

s2cosb2

r 2
D sin

Df0

2
.

~27!

This method corresponds to a particular choice of a unifo
approximation. It yields an approximation that is correct
the ‘‘optical boundary’’uDfu5p and in the GTD limit, and
it interpolates between them. There are other possibilitie
obtain a uniform approximation, for example by mapping t
exponent onto a quadratic function in the three variables
then choosing an appropriate approximation for the am
tude function. This reflects the fact that uniform approxim
tions are in general not unique. For example, a different
terpolating approximation can be obtained by dropping
sine term in Eq.~27! which corresponds to replacing it by it
value at the optical boundary.

The evaluation of the integralI is rather lengthy. It con-
sists in carrying out the expansions and performing lin
transformations of the variables such that, finally, the d
nominator depends only on one of the variables and the
tegral can be expressed in terms of the modified Fres
function. A comparison with Ref.@12# shows, however, tha
the same diffraction integral occurs for the diffraction o
billiard corners. For that reason, the calculations do not h
to be done again, and the result can be inferred from
paper. One has (c.0)

E
2`

`

ds1E
2`

`

ds2E
2 i`

i`

dz
exp$ ik~ L̃1r 11r 22cz2!%

a1z1bS s1cosb1

2r 1
2

s2cosb2

2r 2
D

52
4p2sgn~a!t

kubucosb1cosb2
A2r 1r 2uM̃12u

cuTr M22u

3KS i kUabUA 2kuM12u
uTr M22u D eikL2 ip(n1k2 ñ)/21B, ~28!
f

ri-
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y

t

to
e
d

i-
-
-
e

r
-

n-
el

e
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whereB denotes a boundary contribution whose origin is t
discontinuity of the diffractive part of the Green function.
is canceled by a corresponding boundary contribution fr
the geometrical part of the Green function. In Eq.~28!, L and
M denote the length and stability matrix of the orbit, respe
tively, and n is the number of conjugate points along th
orbit. k is given by

k5H 0 if
M12

Tr M22
.0

1 if
M12

Tr M22
,0,

~29!

andt5122k.
With Eq. ~28!, and noting that the derivative in leadin

order gives a factor (iL ), one obtains the final result for th
contribution of a diffractive orbitj:

dj~k!52ReF 2tL sin~ap!eikL2 ipm/21 if21a2 iDf/2

pUsinS Df

2 D UAuTr M22u

3KS i kUcot
Df

2 UA 2kuM12u
uTr M22u D G , ~30!

where m5n1k agrees with the usual definition of th
Maslov index for periodic orbits.

Formula~30! is the main result of this paper. It describe
the contribution of a diffractive orbit to the density of state
and is valid for all scattering anglesDf and for 0,a,1. It
is assumed that the orbit is isolated and generic, in partic
that TrMÞ2 and thatM12Þ0. If these conditions are no
satisfied then the formula has to be modified. This is ana
gous to typical semiclassical approximations in terms
classical trajectories. For example, periodic orbit contrib
tions to the density of states have to be modified if the orb
occur in families or undergo bifurcation~case TrM52), and
contributions to the Green function have to be modified if t
final point of a trajectory is conjugate to the initial poin
~caseM1250). An example for a system with families o
diffractive orbits is treated in Sec. IV. Finally we note that
slightly simpler approximation than Eq.~30! can be obtained
by dropping the sine term in the denominator in Eq.~30! and
replacing the cotangent by a cosine, corresponding to
discussion after Eq.~27!.

The use of the full Fresnel function in Eq.~30! is neces-
sary in an angular region around the forward direction w
width of order k21/2. For angles outside this range th
Fresnel function can be replaced by its leading asympt
form, which results in

dj~k!'ReS L sin~ap!

p cos~Df/2!

1

A2pkuM12u
expH ikL2 i

p

2
n

1 iaf212
i

Df2 i
3pJ D . ~31!
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This agrees with the GTD approximation for the diffracti
orbit @18#:

dj~k!5ReS L

p
Gg

j~r2 ,r1!D~f1 ,f2! D . ~32!

It is a contribution that is of order 1/Ak smaller than the
contribution of a isolated periodic orbit. In Eq.~32!, Gg

j de-
notes the contribution from the trajectoryj to the geometri-
cal part of the Green function, wherer15r2 is the position of
the flux line.

In the opposite limiting case atuDfu5p the uniform ap-
proximation is of the same order as that of a periodic o
and it is discontinuous. Asufu goes throughp, the contribu-
tion makes a step of size

dj~k!uDf5p202dj~k!uDf52p1052
2tL sin~ap!

pAuTr M22u

3sinS kL2
p

2
m1~2m11!pa D . ~33!

In order to understand this discontinuity we consider
angleDf5p2« which is infinitesimally different fromp.
By examining the linearized motion around the diffracti
orbit one finds that there is, in general, a periodic orbit in
infinitesimal neighborhood of the diffractive orbit. This orb
is obtained from the conditions thatdq5dq8 anddp5dp8
2« ~at energyE51), where the primed and unprimed qua
tities are infinitesimal perpendicular deviations from t
starting point and end point of the diffractive orbit, respe
tively. From these conditions one finds that the position
the periodic orbit is given bydq52«M12/(Tr M22). De-
pending on the sign of the left-hand side, i.e., on the value
k, there can be two possible cases that are shown in Fi
for positiveDf nearp.

If one moves the flux line in a way thatDf goes through
p, then the flux line crosses this periodic orbit at the sa
instant. For the periodic orbit the semiclassical contribut
is also discontinuous, since the winding number of the p
odic orbit changes. For a primitive orbit the winding numb
changes by11 if k50 and by21 if k51. By writing the
product of sines in Eq.~33! as a sum of two cosines, one ca
show that the two discontinuities cancel exactly and the s
of both contributions is continuous. This shows that the u
form approximation for diffractive contributions is necessa

FIG. 4. Parts of a diffractive orbit and a nearby periodic orbit
k50 andk51.
it
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in order to make semiclassical approximations continuou
the position of a flux line is changed.

IV. DIFFRACTIVE ORBITS
IN THE CIRCULAR BILLIARD

A simple example in which diffractive orbits are not iso
lated is a circular billiard with a flux line in its center. Thi
system is integrable since the energy and the angular
mentum around the center are conserved. All diffractive
bits run from the flux line to the boundary, and are reflec
back directly onto the flux line. They appear in one- or mo
parameter families, and their lengths are multiples of 2R,
where R is the radius of the circle. Contributions of thes
diffractive orbits to the density of states were observed
Ref. @19#.

We are interested in the leading order semiclassical c
tributions of the diffractive orbits. For this purpose one ca
not apply formula~30! since the orbits have a stability matri
with trace 2. Although one can in principle obtain the d
fractive contributions from the boundary integral method
is now much more convenient to start from the toru
quantization conditions for integrable systems@Einstein-
Brillouin-Keller ~EBK! conditions#. In this way one can ob-
tain all leading order diffractive contributions to the dens
of states at once, even those for multiple diffraction.

The exact solutions of the Schro¨dinger equation are given
by the solutions of the flux line in a plane~4! with a different
normalization constant and the additional condition that
wave functions have to vanish atr 5R. From this condition
follows that the energies are determined by the zeros of
Bessel functions Em,n5\2km,n

2 /(2M ), where km,n

5 j um2au,n11 /R, and j n,n is thenth zero of the Bessel func
tion with indexn.

The EBK quantization conditions yield semiclassical a
proximations to these energy levels. They have the form

1

2p R dfpf5\m, mPZ,

1

2p R drpr5\S n1
3

4D , n50,1,2, . . . . ~34!

Due to the conservation of the angular momentum, the fi
condition givespf5\m and the second condition is evalu
ated with the energy conservation lawE5„pr

21(pf

2\a)2/r 2
…/(2M ), and yields

Akm,n
2 R22~m2a!22um2auarccos

um2au
km,nR

5pS n1
3

4D ,

~35!

which determineskm,n as a function of the two quantum
numbersm andn.

From Eq.~35! the periodic orbit contributions to the den
sity of states are obtained by applying the Poisson sum
tion formula @20#
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d~k!5 (
M ,N52`

` E
2`

`

dmE
23/4

`

dne2p i (Mm1Nn)d~k2km,n!

5 (
M ,N52`

` E
a2kR

a1kR

dm
1

pk
Ak2R22~m2a!2

3exp$2p i „Mm1Nn~m,k!…%

5 (
M ,N52`

` E
0

kR

dm
1

pk
Ak2R22m2 expH 2p iM ~m1a!

12iNFAk2R22m22m arccos
m

kRG2
3p

2
iNJ

1@a→2a#. ~36!

We now consider the main semiclassical contributions
the integrals in Eq.~36!. Altogether these are four contribu
tion. One is the only nonoscillatory termM5N50, which
yields the leading area term for the mean density of stat

dA~k!5
2

pkE0

kR

dmAk2R22m25
1

2
kR2. ~37!

This agrees with the leading term in Weyl’s lawAk/(2p),
with areaA5pR2.

The second main contribution arises from the station
points of the integrals. A stationary phase approximat
gives the contributions of the periodic orbits that have a
been obtained in Ref.@19#,

dpo~k!5 (
N52

`

(
M11

[N/2]

gM ,NA 4k

pN
R3sin3

pM

N

3cosS 2NkRsin
pM

N
2

3p

2
N1

p

4 D cos~2pMa!,

~38!

where gM ,N51 if M5N/2 and gM ,N52 if MÞN/2. This
factor arises from the fact that the stationary points forM
5N/2 lie on the end pointm50 of the integrals in Eq.~36!
and give only half the contribution.

The remaining two contributions follow from the boun
aries of the oscillatory integrals. They can be obtained by
integration by part, which yields

b.c. of H E
2`

z

dxg~x!ei f (x)J 52 i
g~z!

f 8~z!
ei f (z) ~39!

for an upper end of an integration range. Ifz is on the lower
end of an integration range the end point contribution
given by minus the right hand side of Eq.~39!.

With Eq. ~39!, for the contribution fromm5kr one ob-
tains
o

:

y
n
o

n

s

dL~k!5 (
N,M52`

`

8
1

pk

3

Ak2R22m2expH 2p iM ~m1a!2
3p

2
iNJ

2p iM 22iN arccos
m

kR

U
m→kR

1@a→2a#

5
2R

p (
N51

` sinS 3p

2
ND

N
52

R

2
, ~40!

where the prime denotes that the term (N,M )5(0,0) is ex-
cluded from the sum since it corresponds to a nonoscillat
integral. The result in Eq.~40! can be identified with the
perimeter term in the asymptotic expansion of the mean d
sity of states.

From the other end points of the integrals atm50, one
obtains

dd~k!5
iR

2p2 (
M ,N52`

MÞN/2

`
1

M2
N

2

expH 2p iM a12iNkR

2
3p

2
iNJ 1@a→2a#5dd

e~k!1dd
o~k!. ~41!

Here the termsM5N/2 have to be excluded from the su
since they have already been taken into account by the
tionary phase evaluation. For convenience the sum is s
into two parts, corresponding to a summation over even
odd values ofN, respectively.

For the first partN is replaced by 2N, the summation
index M is shifted byN, and terms for positive and negativ
values ofM are combined:

dd
e~k!52

R

p2 (
N52`

`

(
M51

`
sin@2paM #

M
expH i2NS pa12kR

2
3p

2 D J 1@a→2a#

5
2R

p
~122a! (

N51

`

sinS 2NS 2kR2
3p

2 D D
3sin~pa2N!; ~42!

and for the second partN is replaced by 2N11, the summa-
tion index M is shifted byN, and terms forM>1 and M
,1 are combined:

dd
o~k!52

2R

p2 (
N52`

`

(
M51

`
sin@pa~2M21!#

2M21
expH i ~2N11!

3S pa12kR2
3p

2 D J 1@a→2a#

5
2R

p (
N50

`

sinS ~2N11!S 2kR2
3p

2 D D
3sin„pa~2N11!…. ~43!



en

o
ts
-
n

o
n

it

a

to
a

od

ca
n

or
s

i
t

,
ic

f

this

o-
p-

ged.
of

th
ear-
case
rbit
is
la
but
of

udy
t in
o-

ed
in-

re
used
its
as-

of
bil-
-
d-
ne
be
ero

gu-
it is
for
ive

of

3990 PRE 60MARTIN SIEBER
The formulas for evaluating the summations in Eqs.~40!,
~42!, and~43! can be found in Ref.@21# and are valid for 0
,a,1.

Collecting all results, the complete trace formula is giv
by

d~k!'d̄~k!1 (
N52

`

(
M51

[N/2]

gM ,NA 4k

pN
R3sin3

pM

N

3cosS 2NkRsin
pM

N
2

3p

2
N1

p

4 D cos~2pMa!

1 (
N51

`
2R

p
sinS 2NkR2

3p

2
ND sin~pNa!

22a (
N51

`
2R

p
sin~4NkR23pN!sin~2pNa!. ~44!

It consists of the mean level density, the contributions
periodic orbits, and the contributions of diffractive orbi
which are smaller by an orderk21/2 than those of the peri
odic orbits. The formula is similar to the corresponding o
for a harmonic oscillator with a flux line@22#.

The diffractive orbit term in Eq.~44! can be given a more
direct interpretation since it can be transformed into a sum
d functions by using the Poisson summation formula. O
obtains

dd~k!52
R

2p (
n52`

` FdS kR

p
2

3

4
1

a

2
1nD

2dS kR

p
2

3

4
2

a

2
1nD G1

aR

p (
n52`

`

3FdS 2kR

p
2

3

2
1a1nD2dS 2kR

p
2

3

2
2a1nD G .

~45!

The argument of one of thed functions can be identified with
the semiclassical quantization condition for eigenvalues w
vanishing angular momentum (m50): kR'pa/213p/4
1np. Since the full trace formula produces delta peaks
the eigenvalues given by the EBK conditions~35!, the dif-
fractive orbits have the following role: they contribute
peaks at eigenvalues with vanishing angular momentum,
they cancel wrong peaks that are produced by the peri
orbit sum.

The fact that the periodic orbits produce wrong peaks
be understood by noting that the periodic orbit contributio
~38! are invariant undera→2a. Due to this symmetry the
periodic orbits give also rise to wrong peaks atkR
'2pa/213p/41np. The first two terms in Eq.~45! pro-
vide a correction to this failure in the approximation f
states with zero angular momentum. The other two term
Eq. ~45! are necessary in order that the approximation
invariant undera→12a, since the spectrum is invarian
under this replacement.

A test of the trace formula~44! is presented in Fig. 5
which shows a comparison between quantum mechan
and semiclassical results for the Fourier transform~with a
f

e

f
e

h

t

nd
ic

n
s

in
s

al

Gaussian cutoff! of the oscillatory part of the density o
states. The value ofa is chosen to bea50.25, since for this
value the periodic orbit contributions start atL58R. The
difference between the two curves cannot be seen on
scale.

V. CONCLUSIONS

One general property of uniform approximations for is
lated diffractive orbits is that they make semiclassical a
proximations continuous as a system parameter is chan
They cancel discontinuities in semiclassical contributions
periodic orbits. In billiards with concave boundaries or wi
corners, those discontinuities are connected with the app
ance or disappearance of periodic orbits. In the present
the discontinuity is due to a phase change in periodic o
contributions. In addition, the diffraction on a flux line
very similar to the diffraction on corners. The final formu
is expressed in terms of the same interpolating function,
it is also simpler since it consists only of one term instead
four. This suggests, for example, that a semiclassical st
of two-dimensional systems which are nonintegrable bu
which the classical motion is still restricted to a tw
dimensional surface in phase space, might be perform
more easily on billiards with a flux line instead of pseudo
tegrable polygonal billiards.

In this paper we considered only diffractive orbits that a
scattered once on a flux line. The same method can be
to obtain semiclassical contributions of diffractive orb
with multiple scattering, but the formulas become incre
ingly more complex and have to be expressed in terms
multiple Fresnel integrals. The treatment of an integrable
liard with a flux line like the circular billiard is much sim
pler. There all leading order diffractive contributions inclu
ing those from multiple diffraction can be obtained in o
step from the EBK conditions. Moreover, they can
summed up and shown to contribute only to states with z
angular momentum.

One remaining question is whether in semiclassical ar
ments concerning spectral statistics in chaotic systems
sufficient to consider only periodic orbits. One argument
this is that the semiclassical contributions of most diffract

FIG. 5. Fourier transform of the oscillatory part of the density
states for the circular billiard witha50.25 andR51 ~full line! in
comparison with the semiclassical approximation~dotted line!. Di-
mensionless units are used in which\52M51. Inset: Magnifica-
tion of one peak.
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orbits ~GTD region! are by an order 1/Ak smaller than those
of periodic orbits, wherek is the wave number. For scatterin
angles near the forward direction they contribute m
strongly, up to the order of a periodic orbit, but the cor
sponding angular regime of this transitional region decrea
proportional to 1/Ak. So one might argue that diffractiv
orbits become less and less important in the semiclass
regime.

Let us discuss this point in more detail. By applying t
trace formula in order to resolve adjacent energy levels w
wave numbers of orderk, one has to take into account a
orbits up to the Heisenberg lengthLH}k. In a chaotic system
the number of diffractive orbits increases exponentially w
the orbit length. If we assume that the scattering angle
uniformly distributed, then the relative number of diffractiv
.
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e
-
es

al

h

is

orbits in the transitional region decreases like 1/Ak. How-
ever, the total number of diffractive orbits in the transition
region is still increasing exponentially due to the exponen
increase of all diffractive orbits. A similar argument can
applied to orbits with multiple scattering. It is not obviou
that these orbits can be neglected. Moreover one can s
that even in the GTD approximation diffractive orbits have
non-vanishing influence on spectral statistics in the semic
sical limit @23#.

ACKNOWLEDGMENTS

Financial support by the Deutsche Forschungsgem
schaft in the form of a ‘‘Habilitandenstipendium’’~SI 380/
2-1! is gratefully acknowledged.
r,

ett.
t.

M.

,

.

@1# M. V. Berry and M. Robnik, J. Phys. A19, 649 ~1986!.
@2# O. Bohigas, inLes Houches 1989 Session LIIon Chaos and

Quantum Physics, edited by M. J. Giannoni, A. Voros, and J
Zinn-Justin~North-Holland, Amsterdam, 1991!, p. 87.

@3# F. Haake,Quantum Signatures of Chaos~Springer, Berlin,
1992!.

@4# M. L. Mehta,Random Matrices~Academic, Boston, 1991!.
@5# G. Date, S. R. Jain, and M. V. N. Murthy, Phys. Rev. E51,

198 ~1995!.
@6# H. Bruus, C. H. Lewenkopf, and E. R. Mucciolo, Phys. Rev.

53, 9968~1996!.
@7# Y. Aharonov and D. Bohm, Phys. Rev.115, 485 ~1959!.
@8# S. Olariu and I. I. Popescu, Rev. Mod. Phys.57, 339 ~1985!.
@9# G. N. Watson,A Treatise on the Theory of Bessel Functio

~Cambridge University Press, Cambridge, 1966!.
@10# J. B. Keller, J. Opt. Soc. Am.52, 116 ~1962!.
@11# H. Primack, H. Schanz, U. Smilansky, and I. Ussishkin, Ph

Rev. Lett.76, 1615~1996!; J. Phys. A30, 6693~1997!.
@12# M. Sieber, N. Pavloff, and C. Schmit, Phys. Rev. E55, 2279

~1997!.
@13# R. E. Kleinman and G. F. Roach, SIAM~Soc. Ind. Appl.
.

Math.! Rev.16, 214 ~1974!.
@14# J. R. J. Riddell, J. Comput. Phys.31, 21 ~1979!; 31, 42 ~1979!.
@15# M. L. Tiago, T. O. de Carvalho, and M. A. M. de Aguia

Phys. Rev. E55, 65 ~1997!.
@16# M. Sieber, Nonlinearity11, 1607~1998!.
@17# M. C. Gutzwiller, J. Math. Phys.12, 343 ~1971!.
@18# G. Vattay, A. Wirzba, and P. E. Rosenqvist, Phys. Rev. L

73, 2304 ~1994!; N. Pavloff and C. Schmit, Phys. Rev. Let
75, 61 ~1995!; Phys. Rev. Lett.75, 3779~E! ~1995!; H. Bruus
and N. D. Whelan, Nonlinearity9, 1023~1996!.

@19# S. M. Reimann, M. Brack, A. G. Magner, J. Blaschke, and
V. N. Murthy, Phys. Rev. A53, 39 ~1996!.

@20# M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A349,
101 ~1976!.

@21# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series
and Products~Academic Press, San Diego, 1980!, corrected
and enlarged edition.

@22# M. Brack, R. K. Bhaduri, J. Law, C. Maier, and M. V. N
Murthy, Chaos5, 317 ~1995!; 5, 707~E! ~1995!.

@23# M. Sieber, e-print mpi-pks/9907008.


